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A B S T R A C T   

The food delivery market has increased rapidly in the last few years, becoming a well-established reality in the 
business world and a common feature of urban life. Food delivery platforms provide the end-to-end services that 
connect restaurants with consumers, including the delivery service to those people ordering food through an 
online portal. A key component of these platforms is logistics, specifically the logistics of drivers. Ideally, the 
number of drivers operating in an urban area should be just the right number to serve the demand in that area. 
Since the demand is extremely dynamic in space and time, the spatial–temporal distribution of drivers remains a 
challenging problem, partially solved by means of variable incentives in different city areas at different times. In 
this context, a precise demand prediction would avoid a local lack of drivers in some areas, and an inefficient 
concentration of drivers in some other areas. For this reason, we propose a deep neural network-based meth-
odology to forecast short-term food delivery demand distribution over urban areas. The study, carried out on a 
real-world dataset from a food delivery company, focuses on hourly demands and frequent prediction updates. 
The sequential modeling approach, designed to catch rapid changes and sudden variations beyond the general 
demand trend, is based on a multi-target CNN-LSTM regressor trained on location-specific time series. The 
methodology uses a single model for all service areas simultaneously, and a single one-step volume inference for 
every area at each time update. The results disclose a better performance over baselines (historical estimates for 
the same time-area) and more traditional statistical approaches (moving averages and univariate time-series 
forecasting), demonstrating a promising implementation potential within an online delivery platform 
framework.   

1. Introduction 

Propelled by developments in information communication technol-
ogies, online platforms have become ordinary entities in people’s 
everyday life, by allowing for an instant match between demand and 
supply (Kenney and Zysman, 2016; Wood et al., 2019; Howcroft and 
Bergvall-Kåreborn, 2019). Online food delivery services have gained a 
central role, increasing the related market dramatically in the last few 
years and becoming a well-established reality in the business world. 
Characterized as platforms responsible for ordering, paying and moni-
toring the delivery process (Pigatto et al., 2017), they especially 
encountered the need for service intermediaries of small and medium 

restaurants (Yeo et al., 2017). By expanding choice and convenience, the 
online food delivery market segment has been attracting remarkable 
investments across the Americas, Asia, Europe, and Middle East; its 
global revenue amounts to 107.4 billion US$ in 2019 (Statista. “eSer-
vices Report, 2020). 

Food delivery applications allow customers, by means of a smart-
phone, to order food items from a wide range of restaurants and have 
them shortly delivered at the doorstep. The increasing popularity lies in 
a mutual benefit for both consumers and food service providers. Ease, 
speed and precision in the ordering and delivery process draws the 
attention of customers (Cho et al., 2019; Doan Ngoc, 2013; Roh and 
Park, 2019); an increased revenue, labor expenses reductions and the 
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facilitation of supply activities attracts the providers (See-Kwong et al., 
2017). Nowadays, online food delivery is deeply integrated in the urban 
life, providing a specific delineation to food supply systems and inevi-
tably influencing people’s food-related habits. 

A key component to the success of food delivery systems is repre-
sented by short and predictable waiting times, inserted in a policy of 
strict time optimization. In platform-to-consumer delivery companies, 
this aspect particularly relates to the logistics of drivers, primary factor 
in densely populated regions. Compared to physical shopping, online 
purchases are generally more concerned about time (Hsiao, 2009). If 
delivery takes too long, customers’ satisfaction will decrease, potentially 
leading to a loss of clients and sales volume; as part of the service 
quality, delivery time markedly affects consumers’ decision-making 
(Xiaomin and Yi, 2017; Zhang et al., 2019). 

In this context of food delivery optimization, a company’s main 
challenge is the logistics and distribution of drivers across the city. 
Ideally, the number of drivers located in each urban area should 
correspond to the local demand, whereby more drivers are needed in the 
areas that are expected to receive a higher number of orders. Due to the 
extremely dynamic profile of urban demand in space and time, the 
spatial–temporal distribution of drivers is guided, in practice, by means 
of variable incentives in different city areas at different times. A correct 
demand prediction would avoid a local lack of drivers (longer delivery 
time and decrease of customers’ satisfaction) in some areas and an 
inefficient concentration of drivers in some other areas. Our research 
direction is to use predictive analytic tools to analyze the food demand 
history of a specific delivery platform for predicting the future distri-
bution of its expected demand volume. 

To support the planning and logistics of deliveries within the plat-
form, we propose a deep neural network-based methodology to forecast 
short-term food delivery demand distribution over space. We focus on 
predicting the future number of orders in each area of the city as a basis 
for supporting logistics decisions, such as driver logistics. To take into 
account realistic application scenarios, we target hourly demands and 
frequent prediction updates. In particular, since demand volume is 
subjected to very rapid changes in time and space, the challenge lies in 
grasping abrupt variations beyond the general trend. We therefore 
present a spatially-oriented short-term forecasting methodology, 
leveraging sequential modeling and deep learning techniques. 

The underlying criteria is based on mining temporal patterns of order 
volumes, assuming that the current demand exhibits some dependences 
on past volume quantities. The characteristics of the series are hypoth-
esized to carry essential information for anticipating future demand 
conditions. While typical time series analyses focus on learning the 
general trend via purely statistical methods (Aslanargun et al., 2007; 
Junior et al., 2014; Chmieliauskas and Guršnys, 2019; Samal et al., 
2019), the natural characterization of food demand over time is defined 
by quick volume variations that needs to be properly detected in order to 
provide a satisfactory service. Those approaches, indeed, tend to lead to 
ineffective predictions when in presence of intense oscillations and shifts 
to boundary conditions. Moreover, since multiple city areas are taken 
into account, multiple predictions are to be performed, whereby each 
location is associated to different demand volumes and different 
sequential patterns over time. Our goal is to collectively generate pre-
dictions based on a single model (and a single training process) 
comprising the totality of urban areas, therefore avoiding singularly 
fitting each area with its corresponding distinctive model. In practice, 
this way provides a much more efficient strategy, since the model is 
deployed as a whole, and not in the form of hundreds of unique models. 
Furthermore, it is intended to leverage a combined global view of the 
city trend, not only analyzing patterns of single areas, but also detecting 
inter-location relations in the demand variation. 

To meet these technical and business requirements, our method re-
lies on a multi-target CNN-LSTM regressor trained on location-specific 
time series. The model is conceived to output the urban distribution of 
short-term food delivery demand by leveraging a single training process 

for all urban areas and a single one-step volume inference for every area 
at each time update. Starting from the original set of food delivery orders 
received and recorded through a commercial online platform (including 
time stamp of the order and location of the restaurant), data are first 
aggregated in space and time, building sequences of numbers of orders 
whereby each area is represented by a series of values unfolding in a 
fixed time step. The sequences are then stacked together as a combined 
input to the recurrent network-based regressor, which is jointly trained 
on the block of time series to learn the underlying patterns of urban food 
delivery demand. A multi-target dense layer finally provides a number of 
output values equal to the number of city areas. 

The suggested approach is purely data-driven, capturing variability 
patterns directly from demand volume sequences, without requiring any 
manual feature extraction. Each individual location’s prediction is 
therefore based on the collective analysis of urban demand over several 
geographic areas. Once tested on a real-world dataset, our methodology 
reveals a prominent feasibility in the context of short-term distributed 
food delivery demand forecasting, disclosing better performances over 
baselines and traditional approaches. 

2. Methodology 

We present a forecasting tool that collectively learns sequential 
patterns of spatial–temporal demand variation for predicting the num-
ber of food orders received in each urban sub-territory at the next time 
step in the future. This section presents the adopted methodological 
path, from defining collective time series to the use of deep neural 
networks in the form of a sequential multi-target regressor. 

2.1. Collective time series definition 

The approach is based on the primary consideration of geographic 
partitioning, assuming a city divided in multiple local areas. Following a 
multi-sequential modeling perspective, each individual urban sub- 
territory is associated to a time series describing the evolution of its 
food delivery history. Its events are organized into a sequence of order 
counts falling in a time window and following a time step for updating. 
Therefore, the time series of a city area a arises as a sequence of chro-
nologically ordered count values, defined according to the fixed time 
window Δt, and unfolding into the predefined update step t, namely 
Sa = {#orders([τ, τ + Δt])a|τ = t,2t,3t,⋯}. 

The global order sequence of the entire city is obtained by stacking 
together the sequences of all areas, synchronized at the same update step 
and time window. The input to the prediction model is a multidimen-
sional time series, whose dimensionality refers to the number of city 
areas. More precisely, given a territory division into N areas, the portion 
of the sequence identifying a particular update time τ+Δt is made of a 
vector of N values reporting the number of orders within the time span 
[τ, τ +Δt] in each area a, namely S(τ+Δt) = [#orders([τ, τ + Δt])a|a =

ID 1, ID 2,⋯, ID N]. 
As illustrated in Fig. 1, the same longitudinal position along the 

stacked sequence identifies demand volumes referring to the same time 
span. The values of the two time unit variables Δt and t are arbitrary, 
and should be set according to the data source and the forecasting 
problem. The final data configuration consists of a block of 
longitudinally-stacked time series, unfolding in identical time steps, 
distinctively reporting the consecutive numbers of received delivery 
orders in each of the areas within the city territory. 

2.2. Multi-target deep learning model for distributed food delivery 
demand forecasting 

The proposed deep neural network model is designed for simulta-
neously processing the distributed food delivery demand volume over 
the city. Its structure consists of three building blocks: a multi- 
dimensional input layer, a recurrent block of CNN and LSTM layers, 
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and a multi-target output layer. A visual representation of the modeling 
conceptual design is shown in Fig. 2. Each component is individually 
treated in the following subsections. 

2.2.1. Input layer 
The underlying idea is to collectively include multiple urban areas 

into a single predictive model that is able to process their corresponding 
time series without any manual prearranged data blending. We there-
fore utilize a multi-dimensional input layer, each of whose neurons is 
selectively targeted to a specific reference area, in such a way the model 
receives multiple series but through distinctive input channels. 

Specifically, suppose that a city territory is divided into N urban 
areas, whereby each area is described by its characteristic time series. 
The effective input consists of a number of N time series, which, stacked 
together, identify a sequence of N dimensions. At each time step, the 
model receives a vector of N values; vectors across consecutive time 
steps associate the same area to the same position along the array, al-
ways heading towards the same neuron of the input layer, as represented 
in Fig. 3. Food delivery demands of different urban areas are therefore 
analyzed simultaneously but acquired through separate entries, hence 
combining two processing perspectives: the sequential evolution of 
urban demand over time, and its geographic distribution across multiple 
areas of the city. The training process is consequently driven by suc-
cessive chronologically-ordered N-dimensional vectors, leading the 
model to learn global and local sequential patterns. 

2.2.2. Recurrent block 
The recurrent block is responsible for detecting sequential patterns in 

the temporal variation of urban demand distribution. Its internal ar-
chitecture is based on a combination of convolutional and LSTM layers, 
aiming to effectively mine characteristic behaviors along the time series. 
The idea is to use a CNN layer to reshape the raw input data into a more 
convenient representation format, attenuating the noise in the multi- 
dimensional sequence, and to employ LSTM layers to efficiently cap-
ture sequential pattern information. In other words, we leverage the 

capability of convolutional layers of extracting implicit meaningful se-
ries’ characteristics and the effectiveness of LSTM layers for exploring 
short-term and long-term dependencies. The advantages of this combi-
nation on handling sequential data have led to recent increasing adop-
tions in a variety of applications related to time series analysis (Livieris 
et al., 2020; Livieris et al., 2020; Pintelas et al., 2020). We hereby briefly 
describe the two layer types constituting the proposed recurrent block. 

CNN layer. Originally intended for automatically extracting features 
from images (Rawat and Wang, 2017; Krizhevsky et al., 2012), tradi-
tional convolutional layers work by applying several small sliding ker-
nels across a 2D matrix, producing multiple 2D feature maps. By 
applying different convolution kernels on each subregion of the input 
image, multiple convolved features are generated, enhancing more 
meaningful characteristics than the initial input data. The same concept 
can be translated in a sequential processing domain through 1D 

Fig. 1. Overall city representation as a block of longitudinally-stacked sequences of food delivery demand volume (defined with a time window of 1 h and an update 
step of 15 min), each of them referring to a specific urban area. 

Fig. 2. High-level overview of the modeling conceptual structure.  

Fig. 3. Input layer representation: vectors across consecutive time steps asso-
ciate a same area to the same position along the array, always heading towards 
the same neuron. 
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convolutions. A 1D convolutional layer slides kernels across a sequence, 
providing a 1D feature map per kernel, where each map represents a 
very short learned sequential pattern. The number of kernels defines the 
layer output dimensionality: K kernels produce K 1-dimensional se-
quences or, equivalently, a K-dimensional sequence. Convolving with a 
stride greater than 1 allows shortening the original length, helping the 
subsequent LSTM layers detect longer patterns; and since the kernel size 
is typically chosen equal or larger than the stride, all input elements are 
used to compute the CNN output, leading the layer learning process to 
preserve the useful information by only dropping unimportant details. 
The use of a convolution process preceding recurrent architectures is 
particularly beneficial in cases of high oscillations and long de-
pendencies along the series. The output of a given neuron located in the 
position j in the feature map k of a 1D CNN layer is summarized in 
Equation (1), whereby L is the length of the kernel, s is the stride, j’ is the 
index identifying an element of the input sequence x, N is the input 
dimensionality (i.e., the number of urban areas), w and b are the cor-
responding internal weights and bias connections. 

zj,k =
∑L− 1

v=0

∑N− 1

k’=0

xj’ ,k’ .wv,k’ ,k + bkwithj’ = j × s+ v (1) 

LSTM layer. LSTM (Hochreiter and Schmidhuber, 1997) belongs to 
the family of recurrent networks, a specific type of artificial neural 
network specialized in the processing of sequential data. Analyzing se-
quences one element at a time, it repeatedly feeds itself with the output 
it produced at the previous step, along with the new element in the 
sequence. Its unit structure consists of a state vector and four distinctive 
neural networks, which are responsible for the vector updates. The task- 
related information is indeed encoded in the state vector, and can be 
selectively deleted or increased at each training step. Specifically, as 
reported in the Equations (2)-(7): a forget gate f defines which past in-
formation to erase from the state vector; an input gate i determines 
which state values to update; a tanh network provides a vector C of new 
values to store; the updated state vector Ct is therefore obtained after the 
action of f , i and C on Ct− 1; and finally, an output gate o is inserted to 
selectively control the LSTM outcome h, which derives from the multi-
plication of o with the tanh of the updated state Ct. The list of operations 
refers to a certain time step t, with xt denoting the corresponding input 
element, and the various W and b indicating the internal weights and 
biases of each distinctive neural network. In the last time step preceding 
prediction, the LSTM output vector carries the overall compressed 
characterization of the original sequence, then used for generating the 
explicit forecasting. When multiple LSTM layers are stacked together, 
the following layer is fed with the output of the previous layer at the 
same time step, and the final output characterization refers to the vector 
at the last step of the last layer. 

ft = σ
(
Wf ∙ [ht− 1, xt] + bf

)
(2)  

it = σ(Wi∙ [ht− 1, xt] + bi ) (3)  

Ct = tanh(WC∙ [ht− 1, xt] + bC ) (4)  

Ct = ft*Ct− 1 + it*Ct (5)  

ot = σ(Wo∙ [ht− 1, xt] + bo ) (6)  

ht = ot*tanh(Ct) (7) 

In the context of our analysis, the sequential input element to the 
recurrent block is represented, at each time step, by the current demand 
volume distribution in the form of a vector representation obtained by 
slicing the multi-dimensional sequence on the temporal axis. As a result 
of the network architecture, the information on singular urban areas, 
initially targeting different entry channels, is then collectively processed 
within the CNN-LSTM layers, ending up in mixed evolving vector 

characterizations. The city areas’ individual peculiarities are therefore 
blended together during the recurrent learning procedure and spit out in 
a shared encoded representation as a single output vector. The totality of 
the CNN and LSTM internal parameters W and b are repeatedly updated 
during the training phase, optimizing the final characterization. Fig. 4 
visually reports an exemplifying conceptual framework of the whole 
recurrent block. 

2.2.3. Output layer 
The output layer is the model structure addressing the translation of 

the LSTM final vector representation into the explicit food delivery de-
mand distribution across the urban territory. The layer outcome in-
volves multiple output values, one for each city area, according to the 
pre-defined territory division. Specifically, each output neuron emits 
the future estimated number of orders for its particular target area, 
representing a piece of the global combined outcome in the form of a 
multi-target regressive prediction. 

The layer is structured as a multi-output fully-connected neural 
network on top of the recurrent block, behaving as a transition point 
from the compressed encoded information in a single LSTM output 
vector to the multiple simultaneous predictions constituting the 
geographically-distributed final outcome. The reshaping of the implicit 
vector representation into the explicit forecasted values is depicted in 
Fig. 5. 

The formal description of the output layer is reported in Equation 
(8), where N refers to the total number of urban sub-divisions, W and b 
indicate the weights and biases of the network layer, and hlast identifies 
the final vector representation of the recurrent block. 

#ordersj = W(out)jhlast + b(out)j∀j ∈ (0,N] (8)  

2.3. Model training 

The data feeding process for the neural network model is performed 
by scanning the multi-dimensional sequence of demand distribution 
with a sliding window, identifying the training features and the target 
variable at each input step. The window, consecutively moving forward 
by one step until the end of the sequence, defines multiple input seg-
ments of a fixed length, whereby the segment length represents the 
extent of the continuous pattern mining activity for sequentially fore-
casting the future demand; its choice is a hyperparameter to tune, 
strongly dependent on the dataset characteristics and the time resolu-
tion of the sequence. 

During the training phase, the deep learning model receives such 
collection of segments, organized as sequential input values together 
with their corresponding desired target variable, and aims to minimize 
the mean squared error between the predicted demand volumes and the 
real registered amounts. Through backpropagation and mini-batch sto-
chastic training, the weights of every network layer are tweaked in the 
direction of the gradient, attempting to generate forecasting outcomes 
that gradually becomes closer and closer to the real targets. 

In the testing phase, the prediction of the future demand distribution 
relies on the model’s parameter configuration that was set up by 
learning historical patterns during training. The most likely demand 
volume estimation is therefore obtained through the evaluation of the 
recent measurements preceding the forecasting time stamp, according to 
the past automatically-learned sequential patterns of food delivery de-
mand variations over space and time. 

3. Experiment 

This section presents the food delivery dataset and reports the 
experimental setup and the achieved results, conveying our findings on 
predicting demand distribution in a real-world setting. The evaluation 
touches upon multiple viewpoints, opening to comparisons with base-
line approaches. The model implementation and training were carried 
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out on TensorFlow (Tensorflow, 2022). 

3.1. Dataset 

The study of food delivery demand trends was approached by 
analyzing a real-world data sample of delivery orders’ information, 
associated to a major online food delivery company. Specifically, we 
leveraged five weeks of historical user-anonymized delivery request 
events, recorded in early 2020, in a high-density metropolitan area. The 
overall demand across the city was therefore embodied in a dataset 
including every food delivery order received and recorded through the 
company’s online platform, whereby each delivery request comprises 
information on the time stamp of the order and the location of the 
restaurant or commercial venue to which the request was directed. This 
highlights the spatial–temporal characteristic of the data, identifying 
each observation with a date and time attribute (with a level of granu-
larity even up to seconds) and the geographic coordinates locating the 
targeted restaurant. 

The data pre-processing focused on transforming these single ob-
servations into a spatial–temporal map of aggregated demand distribu-
tion, following a discretization process in space and time. The sparse 
events need indeed to be grouped according to a certain spatial resolu-
tion, and the continuity of time discretized in fixed time steps. Motivated 
by a realistic application scenario, we formulated the problem as pre-
dicting the demand distribution in the next hour, with a prediction 

update every 15 min. Moreover, we opted for a space discretization 
based on the H3 grid system (H3: Uber’s Hexagonal Hierarchical Spatial 
Index), setting up an H3 resolution equal to 7, which identified hexag-
onal grid cells having an edge length of 1.22 km. This resulted in 290 
portions of urban territory covering the metropolitan area. 

The final input to the model therefore consisted of a 290-dimensional 
sequence unfolding in 15-minute time steps, whose elements reported 
the aggregated number of orders received in the past hour in each of the 
grid cells. A single input time step was shaped as a vector of 290 values, 
representing the distribution of the current hourly demand volume over 
the whole city. 

3.2. Experimental settings 

The specification of the neural network model relied on a recurrent 
block made of one CNN layer and two LSTM layers. The CNN layer was 
characterized by 512 filters, a kernel size of 8, and a stride of 8; the two 
LSTM layers featured a hidden size of 512 neurons each. The sliding 
window identifying the input features was set to comprise the 24 h 
before prediction, therefore a total of 96 scaled values. The output was 
instead defined as a vector of 290 dimensions, representing the fore-
casted number of orders in the next hour for each of the reference areas. 
The training process leveraged a mean squared error loss function, mini- 
batch stochastic training, and Adam optimizer (Kingma and Ba, 2014). 
The evaluation phase was required to focus on a data portion previously 
unseen during training; we therefore split the dataset in two parts, 
namely a training set of 4 consecutive weeks, and a testing portion 
comprising the successive week. 

The definition of an overall measure of global performance was 
based on the typical metrics of mean squared error (MSE), root mean 
squared error (RMSE) and mean absolute error (MAE). A simple 
approach consisted of a plain average of the totality of prediction up-
dates over the testing week. However, since the received food delivery 
demand was unevenly distributed across different areas, a weighted 
score based on its geographic distribution was considered to be pri-
marily important. The underlying idea was to weight the prediction 
error on the basis of the general local demand, whereby the weighting 
factor was represented by the fraction of global weekly demand volume 
contained in each separate area. Those areas receiving a high number of 
requests were therefore supposed to determine a prominent influence on 
the overall score. Moreover, we further adjusted the metrics based on 
the hour of the day, weighting each single prediction on the basis of the 
expected target volume (weighting factor represented by the fraction of 

Fig. 4. Exemplifying conceptual framework of the recurrent block, represented as including two LSTM layers and one CNN layer (in the picture involving a kernel 
size of 4 and a stride of 4). 

Fig. 5. Output layer processing role as translation point from the LSTM final 
vector representation to the explicit food delivery demand distribution across 
the city areas. 
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global weekly demand volume contained in each area at each updating 
prediction step), giving more importance to those forecasting updates 
that were intended to deal with larger amounts of orders. 

Additional analyses also focused on single geographic areas, even 
combined into spatial representation perspectives that aimed to high-
light the prediction error’s geographic distribution and sparsity. 

To provide a proper understanding of the quality of our model, the 
performance results were compared to baseline methods leveraging 
cyclical historical recurrence extractions and regressive statistical 
models, common approaches for time series forecasting tasks. Cyclical 
history-based predictions assume that the expected demand in the future 
is equal to the volume registered at the same hour of the same day in the 
past weeks. Statistical sequential processes, instead, fit the historical 
series to predict the next step of its trend; ARIMA and FBprophet are 
widely used methodologies in this sense. 

The next subsection organizes the experimental findings, organically 
examining the outcomes resulting from the forecasting analysis of the 
expected future food delivery demand. 

3.3. Results 

The overall measures of MSE, RSME and MAE are reported in 
Table 1, disclosing a comparison of the CNN-LSTM model with the 
cyclical recurrence-based approaches leveraging different historical 
spans, namely 1 week, 2 weeks, and the whole month. The first baseline 
therefore assumes that the predicted number of orders is equal to the 
number of orders of the previous week, at the same day of the week and 
at the same time. The other two baselines are grounded in the same 
principle but, instead of only focusing on the previous week, they target 
the previous two weeks and the previous month respectively, averaging 
the corresponding daytime-specific values (e.g., the number of orders on 
the next Wednesday at 1 pm is predicted as the average of the orders in 
the past Wednesdays at 1 pm). By comparing the baselines, the best 
results are obtained in correspondence of a historical time span of 2 
weeks. On the other hand, our model is shown to outperform the three 
approaches, registering a MSE of 115 versus a best baseline’s outcome of 
161. 

The only observation of the standard mean scores can effectively be 
misleading because of the presence of a vast portion of areas receiving a 
very low number of orders, therefore influencing the global average 
score and pushing it towards low numbers. This is the reason why the 
MAEs are all very similar, being a plain average over a lot of zero and 
almost-zero values (some areas normally receives very few daily orders 
and most of merchants are closed overnight). We therefore additionally 
report the weighted mean scores based on the local demand volume each 
area receives, emphasizing the influence of very active regions. Table 2 
shows indeed a marked tendency of increasing the performance differ-
ence between the model and the baselines. 

Finally, Table 3 reports the scores further weighted on the demand of 
single prediction updates, highlighting the influence, within each area, 
of the time spans in which large amounts of orders are delivered. 

Since different areas have different demand volumes and therefore 
different degrees of prediction error, we provide a glimpse of error 
distribution analysis on the multitude of grid cells. Specifically, Fig. 6 
compares the distributed performance of the CNN-LSTM model with 
respect to the best baseline. Considering each bar in the plots as 

representing a specific reference grid cell area, the lower plot shows the 
weekly delivery demand of the top 40 areas by demand volume (as a 
percentage of the average demand), and the upper and the middle plots 
report the difference between the error (MSE and MAE respectively) of 
our model and the one of the “previous 2 weeks” baseline. Positive 
values indicate a better performance of the baseline; negative values are 
in favor of the CNN-LSTM. As observable in the graphs, the model per-
forms better in the large majority of areas, and does not seem to be 
particularly influenced by different volumes of orders. 

For a further exploration, we tested the statistical models of FBpro-
phet (Prophet Project) and ARIMA (Pmdarima Project) on selected 
reference areas. In particular, Fig. 7 reports the prediction errors of the 
top 10 areas by demand volume. The two models follow the general 
trend in the series but are not able to catch the rapid variations, ending 
up in poor performances in terms of overall errors, when compared to 
the CNN-LSTM model and the baselines. Moreover, they require a 
separate fit for each area, not handling multi-output procedures, leading 
to inefficient solutions. 

Even considering area by area, the prediction error is also largely 
affected by different hours of the day, potentially concentrating only in 
specific time spans. For example, the reference sample area in Fig. 9 
discloses a volume of orders per hour (averaged over the testing week) 
that reveals two clear peaks in correspondence to lunch and dinner time; 
the related MAE per hour shows that the model outperforms the baseline 
particularly in those lunch and dinner time spans, whereas the error 
values are overlapping during night time and early afternoon. 

By targeting both temporal and geographic factors, an interesting 
analysis relies on visual maps representing the spatial–temporal distri-
bution of prediction errors, highlighting when and where major mis-
takes occurred. A characteristic example is reported in Fig. 10, depicting 
the geographic distribution of the average prediction errors in the 
weekly time window 7 pm-9 pm, whereby a darker color indicates 
higher numbers of wrongly predicted orders. The figure clearly exhibits 
an error profile that is generally less spread in space for CNN-LSTM, 
compared to the baselines. 

A proper quantification of the prediction error’s geographical 
spreading is illustrated in the plots of Fig. 11, counting the number of 
areas with an error exceeding a certain threshold (i.e., 10, 20, and 30 
wrongly predicted orders) with respect to each hour of the day. The 
comparison graph, again averaged over the testing week, shows a sub-
stantially better performance of the CNN-LSTM model. If we focus, for 
example, on the time span of 7 pm, our model involves about 70 areas 
with an error over 10 orders, whereas the best baseline elicits around 90 

Table 1 
Comparison results (in terms of MSE, RMSE, and MAE) of the CNN-LSTM model 
with respect to the cyclical recurrence-based baselines referring to the previous 
week, previous 2 weeks and previous month.   

CNN-LSTM Previous week Previous 2 weeks Previous month 

MSE  115.8  183.5  161.2  171.3 
RMSE  10.7  13.5  12.7  13.1 
MAE  4.1  4.6  4.2  4.2  

Table 2 
Comparison results (in terms of MSE, RMSE, and MAE, weighted on the area- 
specific weekly demand volume) of the CNN-LSTM model with respect to the 
cyclical recurrence-based baselines referring to the previous week, previous 2 
weeks and previous month.  

Weighted by 
area 

CNN- 
LSTM 

Previous 
week 

Previous 2 
weeks 

Previous 
month 

MSE  783.3  1284.1  1174.6  1346.7 
RMSE  27.9  35.8  34.2  36.6 
MAE  13.9  16.6  16.0  16.2  

Table 3 
Comparison results (in terms of MSE, RMSE, and MAE, weighted on the demand 
of area-specific single prediction updates) of the CNN-LSTM model with respect 
to the cyclical recurrence-based baselines referring to the previous week, pre-
vious 2 weeks and previous month.  

Weighted by upd. 
step 

CNN- 
LSTM 

Previous 
week 

Previous 2 
weeks 

Previous 
month 

MSE  1441.3  2084.5  1919.7  2319.0 
RMSE  37.9  45.6  43.8  48.1 
MAE  22.6  25.8  24.9  25.4  
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areas. Observing the number of areas with an error over 20 orders, we 
even obtain 15 versus 30 areas, therefore halving the geographic 
spreading of the error. Moreover, further extreme behaviors are also 
present, such as at 9am, where the count says 3 versus 16 areas with an 
error over 30 orders. These findings are particularly useful for analyzing 
spatial and temporal predictability; an error that is much less spread 
over the territory means that the wrong predictions are delimited in a 
much smaller region of the city. 

4. Discussion and conclusion 

We presented a deep learning methodology for predicting the 
distributed food delivery demand volume over space. The approach 
focused on a very short-term forecasting process and a distributed 
geographic profile, relying on sequential modeling. The underlying idea 
consisted of building location-specific sequences made of order counts 
unfolding in fixed updating steps and referring to the consecutive 
registered amounts of delivery volume within a selected time frame. The 
proposed method involved a recurrent neural network-based model, in 
the form of a multi-target regression problem. The model receives 
multiple input sequences (each related to a unique urban area) concat-
enated on the time axis. Each input step is a vector containing the values 
of each of the areas at the same time stamp. The output, on the other 
hand, is a vector estimating the future demand distribution over space, 
namely the expected number of orders in each of the reference urban 
areas. The network architecture is based on a CNN-LSTM framework, 
combining a first 1D-convolutional layer, subsequent LSTM layers, and a 
final multi-output fully-connected layer. We assessed the feasibility of 
the methodology on a real-world dataset of food delivery orders. 

In the paper, we highlighted the advantages of our approach when it 
comes to its implementation into production. The proposed neural 
network handles the demand in each area collectively, relying on one 
single global training process, whereas most traditional statistical 
models require a different fit for each different area. The prediction 
consists of a single one-step inference of demand volume distribution at 
each time update, automatically releasing the full block of new location- 
specific output values at once. Moreover, the network does not require a 
refit for each prediction iteration, but needs only to follow a periodical 
retraining based on the evolving trends over time. 

Our method properly detects rapid changes and variations beyond 
the general trend (crucial for a correct short-term demand prediction), in 
contrast to regressive statistical methods, which tend to perform poorly 
in this predictive regime. The model was also compared to cyclical 
historical baselines, built on the assumption that patterns are repeated 
following strict weekly, daily and hourly patterns. The experiment 
particularly highlighted a 2-week historical time span as the most reli-
able weekly-averaging window, among the baselines, for our specific 
case study. The CNN-LSTM model, however, demonstrated its capability 
of detecting sequential patterns and generally outperformed the base-
lines, providing a substantial improvement for correctly predicting food 
delivery demand distribution. This implied an implicit more sophisti-
cated hidden pattern arrangement along the series, carrying information 
on future abrupt demand changes and variations, beyond a simple 
cyclical repetitiveness. The overall idea was therefore based on mining 
the historical evolution of demand trend over the territory divisions, as a 
possible meaningful hint for depicting the expected distribution in the 
future. 

Furthermore, we assessed the results from a geographic perspective, 

Fig. 6. The lower plot reports the weekly delivery demand of the top 40 areas by demand volume (as a percentage of the average demand); the upper and the middle 
plots displays the difference between the error (MSE and MAE respectively) of the CNN-LSTM model and the one of the “previous two weeks” baseline. 
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analyzing the spreading of prediction errors across the city. We observed 
that the CNN-LSTM model provided a substantially smaller error 
spreading over space, concentrating the errors in a smaller number of 
urban areas. This is especially favorable for predictability assessments, 
since it allows labeling only a small limited number of areas as “non- 
reliable”, instead of facing a widespread uncertainty in large urban re-
gions. We can therefore conclude that the model offers a proper effec-
tiveness in terms of both quantitative global performance and spatial 
distribution of prediction errors. It is worth mentioning, however, that 
each specific time span and geographic area can be potentially consid-
ered as a separate micro-environment that can be singularly studied in 
further details. Whereas delving into minute spatial and temporal pe-
culiarities is beyond the scope of this work, it is important to keep in 

mind the inherent distinctiveness of different space–time intersections. 
Our contribution demonstrates the feasibility of mining the rapid 

flow of order data to infer the future demand distribution. Specifically, 
in the context of short-term demand forecasting, where demand is 
subjected to abrupt changes and variations, the prediction needs to be 
very sensitive to small and sudden swings. Moreover, a real-world setup 
implies frequent prediction updates (e.g., every 15 min) for a multitude 
of urban areas, which calls for an efficient automatic solution to 
continuously provide forecasts. Our multi-target CNN-LSTM approach 
offers a possible answer to these challenges, standing out as a promising 
architecture to deal with spatially-distributed short-term predictions. 

In wider terms, this contribution benefits the general online delivery 
domain, a relatively new form of consumption that is rapidly developing 

Fig. 7. Prediction errors of the top 10 areas by demand volume. Fig. 8 enriches the previous results in terms of percentage of predicted volume error with respect to 
the real volume. The main tendency ranges between 10 and 15 percent of prediction error. 

Fig. 8. Percentage of predicted volume error with respect to the real volume.  
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across the world. In addition to the more established restaurant delivery, 
which is the focus of this paper, the market is expanding towards any 
type of on-demand delivery, from groceries to medicines. Traditional 
planning methods based on predefined schedules, pre-set delivery ca-
pacity and delivery policies are well understood and widely applied. 
They are however sub-optimal because of an insufficient ability to adapt 
to demand dynamically and in near real-time. Short-term prediction of 
demand is a key input to optimize the system, estimating, for instance, 
the delivery capacity needed to achieve a specific degree of customer 
satisfaction (e.g., the percentage of orders within a certain delivery 
time), as well the time and space allocation of this delivery capacity. 

Possible future developments can be considered along three di-
rections. The first one goes towards a deeper intuition of the overall 
prediction quality from a purely applied business domain point of view, 
even in terms of economic outcomes. Rather than quantifying statistical 
errors, a specific analysis on the practical consequences of un-
derestimations and overestimations is the next step to take, assessing the 
prediction outputs from a business perspective. Therefore, a special 
focus would consist of exploring and isolating those cases when the 
predicted numbers of orders are less than the real ones (not enough 
drivers in the area, and consequently delays and unsatisfactory service), 
and the cases where the forecasted demand is higher than the actual one 
(wrong incentives leading to monetary loss). A second research direction 
should concentrate on adapting and evaluating the model for multiple 
prediction steps in the future, forecasting several hours ahead and 
assessing the maximum horizon that still allows to outperform the 
baselines. Finally, the last direction revolves around the design of 
further comparative models and approaches, potentially including 
additional input information (such as environmental and event-specific 

knowledge, besides the historical sequential demand trend) that can 
possibly contribute to a better refinement of the forecasting outcomes. 
More in general, the proposed methodology can be tested for different 
use cases, not limited to food delivery demand analysis, involving 
distributed spatial–temporal phenomena characterized by rapid varia-
tions and abrupt distinctive patterns over a grid-based territory. 

In conclusion, the use of a multi-target recurrent neural network- 
based model arises as a promising methodology for geographically- 
distributed sequence forecasting, collectively processing multiple in-
puts and producing simultaneous multiple outputs. Its proposed effec-
tive introduction in the background of food delivery demand prediction 
contributes to highlighting the potential of deep learning for online 
delivery platforms, serving as a basis for business decisions and eco-
nomic strategies aimed to an improved quality of customer-oriented 
services. 
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Fig. 9. Exemplifying description of a sample area in terms of order distribution over time and corresponding prediction error.  

Fig. 10. Geographic distribution of the average prediction errors in the weekly time window 7 pm-9 pm.  
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